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SUMMARY 

Massively parallel finite element strategies for large-scale computations of shallow water flows and contaminant 
transport are presented. The finite element discretizations, carried out on unstructured grids, are based on a three- 
step explicit formulation both for the shallow water equations and for the advection-diffusion equation governing 
the contaminant transport. Parallel implementations of these unstructured-grid-based formulations are carried out 
on the Army High Performance Computing Research Center Connection Machine CM-5. It is demonstrated with 
numerical examples that the strategies presented are applicable to large-scale computations of various shallow 
water flow problems. 
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INTRODUCTION 

Finite element computations of shallow water flows and Contaminant transport can be applied to many 
practical problems: design of river, coastal and offshore structures, disaster prediction and other 
applications related to hydrodynamic, thermal and chemical transport behaviour in oceans, lakes and 
rivers. In this context the finite element method is applicable to complicated water and land 
configurations. In practical computations of this type of problem it is essential to use methods which 
are as efficient and fast as the available hardware allows. Also, computations need to be carried out 
over long time durations to properly simulate and predict the phenomena of interest. 

In recent years, massively parallel finite element computations have been successfully applied to 
several large-scale flow problems. 1-3 These computations demonstrated the availability of a new level 
of finite element computational capability to solve practical flow problems. With the need for a high- 
performance computing environment to carry out simulations for practical problems in shallow water 
flows and contaminant transport, in this paper we present and employ a parallel explicit finite element 
method for computations based on unstructured grids. The finite element discretizations are based on a 
three-step explicit formulation both for the shallow water equations and for the advection-difision 
equation governing the contaminant transport. In these discretizations, for numerical stabilization, we 
use selective lumping43 for the shallow water equations and the streamline upwind/Petrov-GaIerkin 
(SUPG) technique637 for the advection-difision equation. The three-node linear triangular element is 
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used for all variables. Parallel implementation of these unstructured-grid-based formulations are 
camed out on the Connection Machine CM-5. In order to show the efficiency of the three-step scheme, 
the computed results are compared with the results obtained by the conventional two-step ~cheme.4,~ 
As a real-life test problem we carry out simulations of the effect of the tidal current on Tokyo Bay and 
the spread of a pollutant introduced in the bay. 

GOVERNING EQUATIONS 

The governing equations of shallow water flow are 

where U is the mean horizontal velocity, 5 is the water elevation, h is the water depth, g is the 
gravitational acceleration, A[ is the eddy viscosity and f is the Coriolis force. The bottom friction (' can 
be given as 

where n is the Manning coefficient. The Coriolis force can be given a s h  = - kU2, fi = kU,, where k 
denotes the Coriolis acceleration. 

Transport of contaminant, on the other hand, is governed by the advection-diffusion equation 

3) + ( d J q ) , j  - K 4 , j j  = 0, 
at 

(4) 

where $.is the concentration, U is the current velocity and K is the diffusion coefficient. 

SPATIAL AND TEMPORAL DISCRETIZATION 

For the finite element spatial discretization of the governing equations the selective lumping 
Galerkin4?' and SUPG6,' methods are used for the shallow water and advection-diffision equations 
respectively. The weak form of the governing equations can then be written as 

(7) 

where W, 
given boundary terms. 

and cp denote weighting fimctions, z is the SUPG stabilization parameter and ti and q are 
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Using the three-node linear triangular element for the spatial discretization, the following finite 
element equations can be obtained: 

M a p  up,,, + Kapyj upj uyi + Hapiis + Eaa upi + Tpi + Saipj upj = 0, (8) 

where 

ME> = Map + M:p’ B:pjy = Bapir + e p j y ?  ca*pyj = c a p y j  + C p ,  (1 1) 

and superscript 6 denotes the SUPG contribution. The bottom fnction term is linearized and the water 
depth is interpolated using linear interpolation. 

For discretization in time the three-step explicit time integration scheme is employed’ using the 
Taylor series expansion 

f ( t  + At) = f ( t )  + 
where f is an arbitrary function and At is the time increment. Using the approximate equation up to 
third-order accuracy, the following three-step scheme can be obtained: 

first step 

second step 

third step 
a f ( t  + At /2 )  

f ( t  + At)  = f ( t )  + At at . 

Equations (1 3) are equivalent to equation (12) and the method is referred to as the three-step Taylor- 
Galerkin method. This method has third-order accuracy for linear differential equations and second- 
order accuracy for non-linear differential equations.’ Applying this procedure to the governing 
equations, the following discretized equations in time can be obtained: 

first step 

At 
ML aB Un+’13 p i  = M,LBUi, - y(KapyjUj,Uz + Hapic; + EapUj, + Tii + SXipjUi’), (144 
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where superscript n denotes the value computed at the nth time point and At is the time increment 
between the nth and (n + 1)th time steps. The coefficient M& expresses the lumped coefficient and 
M$ is the selective lumping coefficient 

M$ = eMapL + ( I  - e)Map, (17) 

where e the selective lumping parameter. 

STABILITY ANALYSIS 

The CFL stability condition for the one-dimensional linear shallow water equation is investigated. The 
basic equation is written as 

where U is the velocity, [ is the water elevation, g is the gravitational acceleration and h is the water 
depth. The water depth is assumed for simplicity to be constant over the whole domain. The two-node 
linear element is used for the spatial discretization and the three-step explicit scheme is employed for 
the numerical integration in time. The discretized equations for the ith nodal point can be written as 
follows: 

first step 
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second step 

third step 

where 
At p:- 
Ax' 

Consider the solution of the type 

U; = R"expCjwi), 

= S"exp(jwi), 

where j = ,/(- 1) and R and S are the amplification factors of velocity and water elevation respectively. 
Introducing equations (27) and (28) into equations (20)-(25) and rearranging the terms, the following 

2 + e  1 - e  
a=--- coso, 

3 3 
b = -jp sinw. 

The CFL stability condition can be obtained from equation (29) by using the fact that the eigenvalues 
of the coefficient matrix should be less than unity: 

The stability limit is 1.5 times larger than that of the conventional two-step ~ c h e m e . ~  
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PARALLEL IMPLEMENTATION 

The data-parallel implementation has been carried out on the Connection Machine CM-5. For the 
implementation, two types of data arrays at element level and equation level are used. The element- 
level arrays store the data with one element and its degrees of freedom associated with exactly one 
virtual processor. On the other hand, the equation-level arrays keep variables at the level of the global 
equation system. The nodal data, co-ordinates, element-level properties and element-level matrix and 
vectors are stored in arrays of element-level type. The global increment variables are kept in an array of 
equation-level type. Figure 1 shows the data storage modes.* Communication operation from equation 
level to element level is called a gather, while movement of the data from element level to equation 
level is called a scatter. Both gather and scatter may be implemented efficiently on the Connection 
Machine computer. In order to save communication time, the mesh-partitioning3 feature of the 
Connection Machine Scientific Software Library (CMSSL) is used. 

The discretized element-level equation can be expressed as 

where (M& is the element-level lumped mass matrix, (xp), is the element-level unknown vector and 
Cf& is the element-level known vector. The computation of the element-level lumped mass matrix and 
the element-level known vector is performed at the element level. Then these values are assembled at 
the equation level by a scatter operation. The unknown variables xp are solved by 

and the boundary conditions are imposed at the equation level. Figure 2 shows the structure of the 
finite element programme for the time step loop. In this figure n denotes the time step. 

o d e  node node a O O O ,  0 0 0 ,  0 0 0  clement 

lpNl 0 0 0 ,  0 0 0 ,  0 0 0  

lpNl 0 0 0 ,  0 0 0 ,  000 

lpNl 0 0 0 1  a o o ,  o n 0  

IPNJ 0 0 0 ,  0 0 0 ,  000 L p N l o  

Figure 1. Element-level (left) and equation-level (right) 
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Figure 2. Structure of time step loop 

NUMERICAL EXAMPLES 

In order to show the efficiency of the three-step scheme, the finite element analysis for the one- 
dimensional wave propagation problem is considered and the computed results are compared with the 
results obtained by the conventional two-step scheme. Figure 3 shows the finite element discretization 
and boundary conditions. The numbers of elements and nodes are 500 and 378 respectively. In this 
computation the fluid is assumed to be a perfect fluid and the water depth is assumed to be 10 m. For 
the boundary conditions the incident wave amplitude and wave period are assumed to be 1 .O m and 5 s 
respectively. The selective lumping parameter and time increment are assumed to be 0.9 and 0.006 s 
respectively.' Figure 4 shows the computed water elevation at t = 30 s. In this figure the full curve 
represents the computed results obtained by the three-step scheme and the broken curve represents the 
computed results obtained by the two-step scheme. It can be seen that the computed results are in good 
agreement. Figure 5 shows the computed maximum water elevation for the first 30 s. In this figure the 
broken line at 1 m represents the exact value. It can be seen that unstable phenomena are obtained 
around the inlet boundary in the case of the two-step scheme (broken curve), while the computed 
results obtained by the three-step scheme (full curve) are close to the exact value. 

As a real-life numerical example, simulation of tidal flow and contaminant transport in Tokyo Bay is 
carried out. In the past, several numerical results on the tidal current in Tokyo Bay have been 
presented.'&'* However, conventional studies have not accounted for the configuration of geometrical 
boundary and water depth accurately, since a coarse mesh was used in the computations. The aim of 
this study is to determine the details of the flow pattern of the tidal current in Tokyo Bay. Figure 6 
shows the configuration of the boundary and water depth diagram of Tokyo Bay. The water depth 
contours are evenly spaced between 5 m and 100 m at 5 m intervals, while the maximum depth is 
545 m. In this computation a fine mesh which represents the geometry accurately is employed. Figure 
7 shows the finite element discretization of Tokyo Bay. The total numbers of elements and nodes are 
207,797 and 107,282 respectively. This mesh is designed to keep the element Courant number constant 
over the entire domain. 13,14 It can be seen that an appropriate mesh in accordance with the variation in 
water depth can be obtained. For the boundary condition the incident wave elevation is specified on the 
open boundary A-B as [ = a  sin(2ztlT), where a is the incident wave amplitude, T is the incident wave 
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Figure 3.  Finite element discretization. Boundary condition [ = a  sin(2ntlT) on A-B, Li = ( ' d g / ( h  + [)) on A-B, C-D 
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Figure 4. Computed water elevation at t = 30 s 

c = 0.90 

distance ( m )  

Figure 5.  Computed maximum wave amplitude 

period and t denotes time. The incident wave period is assumed to be 12.42 h (M2 tide) and the 
incident wave amplitude is assumed to be 0.36 m.l5*I6 The non-slip boundary condition is used on 
boundaries. The computation is started from the state of still water. For the numerical condition the 
following data are used: A I = 5  m2 s-', n=0.03 and l c = 5  m2 s-'. Figure 8 shows the mesh 
partitioning for 1024 vector units. Figures 9 and 10 show respectively the water depth diagram and 
finite element discretization of the Uraga-Suido channel where the configuration of water depth is 
highly complicated. Figures 1 1 and 12 show the computed current velocity distribution around Uraga- 
Suido at high tide (t=43.470 h) and low tide (t=49.680 h) respectively. Figure 13 shows the 
computed residual flow and Figure 14 shows the streamline of the residual flow. From the latter figure 
it can be seen that some small vortices exist around the Uraga-Suido channel. For the contaminant 
transport analysis the concentration is given at point P (see Figure 10) as an initial condition. Figure 15 



FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS 893 

Figure 6. Boundary and water depth diagram of Tokyo Bay 

shows the contaminant spread at every 3.105 h interval. It can be seen that the contaminant is spread in 
accordance with the periodic oscillation due to the tidal current. The computational speed using 1024 
vector units is 0.340 s/step and 3.16 ms/step/node. 

CONCLUSIONS 

A three-step explicit finite element solver has been presented and implemented on a massively parallel 
supercomputer. The method has been applied to several problems and the computed results are 
compared with the results obtained by the conventional two-step scheme. The conclusions derived are 
as follows. 

1. The three step explicit scheme is a more stable and accurate method compared with the 
conventional two-step scheme. The CFL condition of the three-step explicit scheme is 1-5 times 
larger than that of the conventional two-step scheme. 

2. The three-step explicit solver applicable to an unstructured mesh has been successfblly 
implemented on a massively parallel supercomputer. 

3. As an example a large-scale computation of the tidal current in Tokyo Bay has been carried out. 
The simulation also accounted for the spread of a contaminant due to tidal flows. 

From the results obtained in this paper, it can be concluded that the present method can be usefilly 
applied to large-scale computations of various shallow water flow problems. 
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Figure 7. Finite element discretization of Tokyo Bay 
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Figure 8. Mesh partitioning for 1024 vector units 

Figure 9. Boundary and water depth diagram of Uraga-Suido channel 
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Figure 1 1.  Computed current velocity at high tide 



FINITE ELEMENT COMPUTATION O F  SHALLOW WATER FLOWS 897 

Figure 12. Computed current velocity at low tide 

Figure 13. Computed residual current velocity 
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Figure 14. Streamline of residual flow 
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Figure 15. Computed contaminant spread at every 3.105 h 
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